
Using SNooPy∗

Chris Burns

February 4, 2015

1 Introduction

The philosophy if SNooPy is to provide both an interactive environment to fit TypeIa su-
pernova (SNIa) light-curves as well as a set of routines that can be called within a scripting
environment that would allow the user to write automated fitting routines. The goal is not
to lock the user into one kind of method, like stretch, ∆m15 or what have you. Rather, the
idea is to provide generic tools and specific components of established methods and let the
user decide how best to fit the data. In this way, the software can be thought more of as a
laboratory environment rather than a specific program.

Given that this is a very modular way to program, it doesn’t lend itself very well to
compiled languages. So one has a choice of higher-level scripting languages: python, tcl,
perl, or even the IRAF cl. In this case, Python was chosen. There are many reasons for
this. First, I have the impression that Python is becoming more prevalent in Astronomy (for
example, some of the newer STSci routines in IRAF are only provided through the python
implementation of the cl: pyraf). Second, python is designed from the ground up as an
object-oriented (OOP) language (unlike perl, tcl, IRAF cl or even IDL). OOP is very well
suited for large modular software packages. Lastly, python has access to two very powerful
numerical engines: scipy and pyraf. Scipy is a general-purpose package of scientific routines
while pyraf gives one access to the IRAF library of routines. Together with a very large array
of visualization and database modules, python has everything needed to make this package
work. Python is also, in this author’s opinion, the easiest and most intuitive programming
language to learn and debug. The one thing python lacks is standardization, in the sense that
there is an overabundance of modules and solutions to specific problems. In this instance,
plotting and numerical arrays (vectors, matrices) have many different solutions. For plotting,
I initially chose PGPLOT, as it has a long history in the astronomical community. However, it
now appears that matplotlib is winning out as the most standard plotting package for python,
so I have integrated it in as well. PGPLOT is still faster and more tested, so I recommend it,
but if you prefer matplotlib, you can use it instead (see installation instructions for selecting
plotting package). For the arrays, I’ve chosen Numpy, which his now the de-facto array
handling package.

Do you need to know Python to use SNooPy? It depends what you want to do. If you
want to interactively fit light-curves, then you really don’t need to know how to program
in Python. If you want to write a script that automatically fits light-curves or get at the

∗SuperNovae in object oriented Python.

1



underlying layers of the code then, yes, you need to learn Python. Even if you don’t want
to program, knowing a bit of python syntax can really help in the interactive shell. A good
place to get started with learning python is the python web page: http://www.python.org
http://www.python.org.

SNooPy also uses ipython, an extended version of the python interactive shell. This shell
has many of its own features and tricks that you might find useful. More information on
ipython can be found on its project web page: http://ipython.scipy.org http://ipython.

scipy.org.

2 A Simple Example

First, to start SNooPy, you simply use the command snpy. This is a script that starts up
ipython and loads in the SNooPy modules.

To give an idea of what the software package looks like and how it behaves, here is a
quick session which shows loading the data, fitting a light-curve, plotting the results and
saving the parameters.

$ snpy

Python 2.5.4 (r254:67916, Aug 26 2009, 16:15:39)

Type "copyright", "credits" or "license" for more information.

IPython 0.8.4 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython’s features. %quickref -> Quick reference. help -> Python’s own help system.

object? -> Details about ’object’. ?object also works, ?? prints more.

In[1]: s = get_sn(’SN2006X.txt’)

In[2]: s.fit()

In[3]: s.summary()

--------------------------------------------------------------------------------

SN SN2006X

z = 0.005 ra=185.72500 dec= 15.80920

Data in the following bands: B, g, i, H, K, J, r, u, V, Y,

Fit results (if any):

Observed B fit to restbad B

Observed g fit to restbad g

Observed i fit to restbad i

Observed H fit to restbad H

Observed K fit to restbad K

Observed J fit to restbad J

Observed r fit to restbad r

Observed u fit to restbad u

Observed V fit to restbad V

Observed Y fit to restbad Y

EBVhost = 1.518 +/- 0.014

2



Tmax = 53786.288 +/- 0.126

DM = 31.316 +/- 0.024

dm15 = 1.091 +/- 0.026

In [4]: s.plot(single=1)

[Plot of SN2006X is shown on screen with all filters on a single graph]

In [5]: s.save(’SN2006X.snpy’)

In [6]:

On input line 1, an instance of the sn class1 is created by giving the name of a file
containing the SN light-curves in the flat ASCII format (see section 6.2). The data is retrieved
from the file and loaded into the instance variable s. This object not only contains the
photometric data for SN2006X, it also contains the fit parameters. All the fitting, plotting,
and utility functions are part of the instance. Notice that in line 2 above, the fit function
is part of the s object. On line 3, I ask for a summary of the fit, which shows the best-fit
values of the parameters and tells us which rest-frame filters were used to fit the observed
filters. Note that SNooPy handles the K-corrections (or cross-band K-corrections) as part of
the fitting process. On line 4, we make a plot, which shows up on screen (and has buttons
to save to a file if you wish). Finally, on line 6, I save the instance to file so that I can load
it up at a later time (saving as an instance saves all the fitting parameters, K-corrections,
etc. as well as the light-curve data).

There are other classes besides the sn class, which can be used inside SNooPy. For
example, there is a filter class that has data and functions relating to photometric band-
passes. There are also a couple of template classes that can be used to generate light-curve
templates (currently using ∆m15 and sBV as parameters). Here is another example:

In [7] B = fset[’B’]

In [8] V = fset[’V’]

In [9] seds = getSED([1,2,3,4,5])

In [10] Bmags = array([B.synth_mag(sed) for sed in seds])

In [11] Vmags = array([V.synth_mag(sed) for sed in seds])

In [12] t = CSPtemp.template()

In [13] t.mktemplate(1.5)

In [14] BminusV = t.B - t.V

In [15] BminusVsynth = Bmags - Vmags

In [16] deltaBV = BminusV[16:21] - BminusVsynth

In [17] print deltaBV

Here, in the first two lines, we’ve setup some filters (CSP B and V). The structure fset

is the filter set and contains many different filters (see section 10). Then, we retrieve Eric
Hsiao’s template for days 1 through 5 after maximum. In lines 10 and 11, we compute
synthetic magnitudes for each day and generate a list (this is an example where knowing

1This used to be called the super class in older versions, but super has become a python keyword, so is
off-limits now.

3



python syntax can help a lot). We use the array function to ensure that these are python
arrays, which allows us to do math on them later. Line 12 constructs a template instance and
line 13 generates a template with ∆m15 = 1.5. We can then compare the B-V color obtained
with Prieto’s light-curve templates and what you get by making synthetic magnitudes from
Eric’s SED template. Note that the template is defined from day -15, so element 15 is day
0, 16 is day 1, etc.

3 Fitting Light-curves

All the light-curve fitting is done through a member function of the sn class: fit(). You
basically tell fit() which filters to fit (or all by default) and which parameters to hold
constant. This function sets up some initial book-keeping, and then hands off the work
to a model instance. The model class defines the model that will be used to fit the light-
curves. I did it this way so that adding new models (or modifying existing ones) would be
easier. SNooPy comes with four built-in models: EBV_model, EBV_model2, color_model,
and max_model, which I will explain in the next two sections. At any time, you can switch
between the two by using the choose_model() member function of the sn class (see section
6.3.5). As of SNooPy version 2, you can fit the EBV_model2 and max_model using either
∆m15 or a new stretch-like parameter sBV which is introduced in the CSP’s most recent
analysis paper (Burns et al., 2014).

With the advent of increased complexity of the models and the need for adding priors to
parameters, a new experimental version of the fit() function is now available: fitMCMC().
Unlike the original, which uses the Levenberg-Marquardt least-squares fitter, fitMCMC uses
a Markov Chain Monte Carlo fitter called emcee. The advantage of this is that MCMC,
being a Bayesian framework, allows you to specify priors on your parameters very easily.
This can be particularly useful if the model you are trying to fit is insenstive to one or more
of its parameters. This can happen when your light-curve has very few points (so that shape
is not well defined) or you are using the color_model at low E(B-V). Before, you would
simply have had to keep those parameters fixed a reasonable values. Now you can specify
simple priors so that the uncertainties are far more realistic.

3.1 EBV model

This light-curve model is a variation of that given by Prieto et al. (2006). We compare the
observed data in N filters to the following model:

mX (t− tmax) = TY ((t′ − tmax) /(1 + z),∆m15) +MY (∆m15) + µ+RXE (B − V )gal +

RYE (B − V )host +KX,Y

(
z, (t′ − tmax) /(1 + z), E (B − V )host , E (B − V )gal

)
where mX is the observed magnitude in band X, tmax is the time of B maximum, ∆m15 is
the decline rate parameter (Phillips, 1993), MY is the absolute magnitude in filter Y in the
rest-frame of the supernova, E(B−V )gal and E(B−V )host are the reddening due to galactic
foreground and host galaxy, respectively, RX and RY are the total-to-selective absorptions
for filters X and Y , respectively, KXY is the cross-band k-correction from rest-frame X to
observed filter Y . Note that the k-corrections depend on the epoch and can depend on the
host and galaxy extinction (as these modify the shape of the spectral template). In the

4



fitting, one has the choice of the spectral template of Nugent et al. (2002) or Hsiao et al.
(2007). The latter is the default. You can choose to allow the K-corrections to vary during
the fit, keep them fixed, or not use them at all. See the parameters for the fit() function
in section 6.3.2.

The template T (t,∆m15) can be generated from the code of Prieto et al. (2006) or Burns
et al. (2011). In the former case, you will be fitting to rest-frame BsVsRsIs

2 while in the
latter case, you can fit to uBV griY JH from the CSP data (Folatelli, 2009). You can mix
and match which template generator you use: it is all a matter of which filter you choose for
the restbands instance variable (see section 3.6). In all, this model fits 4 parameters: Tmax,
dm15, EBVhost, and DM.

Note that to determine the host reddening, you need to fit at least two distinct restframe
filters. For now, I’ve left the galactic and host reddening laws (RX and RY ) as member
variables rather than parameters to be fit3. This could change in the future.

3.2 EBV model2

This is the same model as EBV model, except that it can fit both ∆m15 - and sBV -based
templates. And instead of the calibration presented in Folatelli et al. (2010), the calibration
from the upcoming CSP analysis paper (Burns et al, in prep) is used. When using the
choose_model function to select this model, you can specify stype=’dm15’ or stype=’st’

to select the two different light-curve parameters. Please keep in mind that this model is
likely to change until it is officially published. Until that time, it is best to use the EBV_model
instead.

3.3 max model

An alternative to assuming some kind of relationship between the different filters (i.e., some
kind of reddening law as is done in the EBV_model), one can simply fit the maximum mag-
nitude of each light-curve. This is how the max_model model works. It uses the same
light-curve templates as EBV_model, but instead fits the following model:

mX (t− tmax) = TY ((t′ − tmax) /(1 + z),∆m15) +mY +RXE (B − V )gal +

KX,Y

(
z, (t′ − tmax) /(1 + z), E (B − V )host , E (B − V )gal

)
where mY , the peak magnitude in filter Y is now a parameter. Of course, depending on the
number of filters you fit, you will have that many mY parameters. Note that K-corrections
and Milky-way extinction are performed exactly as in the EBV_model case. Therefore, for
N filters, max model will have N + 2 parameters: Tmax, dm15, and N f max, where f is the
rest-band filter name (so if, for instance, you fit an observed light-curve to restframe B, there
will be a Bmax parameter). As with the EBV_model2 model, you can choose which light-curve
parameter you wish to use by specifying the stype argument to choose_model().

NOTE: Please be aware that any non-linear fitter will only find a local minimum in χ2.
It is up to you, the user, to try different starting points in parameter space and see which
one gives the overall best-fit. After each fit, the member variable rchisq is updated with
the reduced-χ2. You can therefore use this to discriminate between different solutions.

2The ’s’ subscript refers to ’standard’, which is to say the Bessel filters from ?
3So far, data I’ve analyzed hasn’t been good enough to distinguish between reddening laws.

5



3.4 color model

In this model, intrinsic colors from Burns et al. (2014) are used to infer the amout of extinc-
tion E(B − V ) as well as the shape reddening law RV . Mathematically, the model being fit
to the light-curves is:

mX (t− tmax) = TY ((t′ − tmax) /(1 + z),∆m15) +Bmax + (X −B) (sBV ) +RXE (B − V )gal +RY (RV )E (B − V )host

KX,Y

(
z, (t′ − tmax) /(1 + z), E (B − V )host , E (B − V )gal

)
where Bmax is the de-reddened and K-corrected B maximum (treated as a free parameter)
and (X − B) (sBV ) is the intrinsic X − B color, which is a function of sBV . In Burns et al.
(2014), it is modeled as a 2nd degree polynomial in (sBV − 1). All other variables have the
same meaning as in previous models. The model has 5 free parameters: sBV , Tmax, Bmax,
E(B − V ), and RV . Note that the distance modulus is not included in this model.

A major complication of this model is that two parameters, RV and E(B−V ), appear as
multiplicative factors in the same term. At best, they will be highly covariant. At worst (for
low values of E(B − V )), the model becomse insensitive to RV . For this reason, it may be
necessary to impose priors on RV . Two such priors were introduced in Burns et al. (2014):
a Gaussian mixture model that applies to all SNeIa, and a binned prior, where a separate
Gaussian prior is applied to the SNIa depending on its value of E(B−V ). Because SNooPy
uses the LM least-squares algorithm by default, there is no natural way to incorporate these
priors using the standard fit() routine. Instead, use the fitMCMC() routine, which fits the
light-curves using Markov Chain Monte Carlo and allows priors to be specified on parameters.
In this case, use the keyword argument rvprior=’mix’ for the Gaussian mixture model, or
rvprior=’bin’ for the binned prior. See section 6.3.3 for more details.

3.5 K-corrections and Reddening coefficients

Regardless of the method used, there are two generic problems when fitting light-curves.
First, because you are observing a SN that is at some redshift, the observed spectral energy
distribution (SED) is shifted to the red compared to what would be observed at zero redshift.
As a result, the filters are sampling a bluer part of the SNIa spectrum. K-corrections are
needed to take this into account and we therefore need either observed spectra of the SN or
some kind of SED template to make this calculation. We also need to take into account, if
possible, of any factors that might alter the shape of the SED (like reddening). Once the
SED is known, it is straightforward to compute the K-correction (see Nugent et al. (2002);
Hsiao et al. (2007)).

Second, because the SED of a SNIa is significantly different from a stellar SED and also
varies with time, the ratio of selective to total absorption (RX) is going to depend on the
redshift of the SN, the epoch of observation, and the amount of host reddening (and any
other factor that modifies the intrinsic SED). Once the SED is known (or assumed), the
reddening coefficient RX can be deduced.

The basic problem here is that we need to know the observed SED as well as possible.
Currently, SNooPy simply takes the SED of Nugent et al. (2002) or Hsiao et al. (2007) (user’s
choice), as the SED. This is used to compute initial k-corrections that are simply a function
of time. If reddening information is known (from a fit value of EBVhost, for instance), the
reddening law of Cardelli et al. (1989), further modified by O’Donnell (1994) is applied to
the SED before computing the K-correction or reddening coefficient. After this initial fit,

6



the N − 1 colors of the SN are computed and these can be used to warp the SED so that
synthetic colors obtained from the SED match the observed colors form the fit (see Hsiao
et al. (2007) ). The hope is that this “warped” SED is the best guess at the correct SED.
This step in the fit process may be skipped by using the mangle=0 argument to the fit()

function.

3.6 Doing the Fit

The fit() function is a member of the sn class. The first argument is a list of observed
filters to fit (or by default, fit them all). Following this argument, you can specify values
for any of the parameters, which will keep them fixed during the iteration: Tmax, dm15, s,

EBVhost, DM, and any of the fmax. By default, the fitter will try to fit the observed filter
set with the same rest-band filters. It is therefore important that your filter names match
the filters provided by the templates: Bs,Vs,Rs,Is (for Prieto et al. (2006) templates) or
u,B,V,g,r,i,Y,J,H (for CSP templates). If your observed filter does not match any of
these (either because you are working at high-z and want to do a cross-band K-correction,
or are working in a different photometric system), you need to specify the restbands for
each observed filter (restbands is a member variable that acts like a python dictionary and
maps observed filters to rest filters). Here is a short example:

In [1] s = get_sn(’04D1oh’)

In [2] s.restbands[’g_m’] = ’B’ ;# Fit observed g_m data with ’B’ (CSP)template

In [3] s.fit([’g_m’], EBVhost=0, dm15=1.1)

In [4] s.fit([’g_m’], EBVhost=0)

In [5] s.restbands[’r_m’] = ’V’; s.restbands[’i_m’] = ’r’; s.restbands[’Jc’] = ’i’

In [6] s.fit([’g_m’,’r_m’,’i_m’,’Jc’], dm15=s.dm15, Tmax=s.Tmax)

In [7] s.fit([’g_m’,’r_m’,’i_m’,’Jc’])

In [8] save(s, "my_lovely_fit.snpy")

On line 1, we make a new instance. On line 3, we decide to fit the megacam g filter with
a rest-frame CSP B template. On line 3, we fit only the g m filter and therefore restrict
EBVhost to 0 (since we don’t have any color information). We can also fix ∆m15 = 1.1 for a
first attempt at a fit (this can help if you have pretty low S/N data). On line 4, we let ∆m15

go free. On line 5, we specify more rest-band filters. On line 6 we add more filters to the
fit and allow the host extinction to vary, though keeping ∆m15 and tmax fixed at the values
determined from the previous fit (all fitted parameters and their errors are saved as member
data of the sn instance). On line 7, we allow all parameters to vary. On line 8, we save the
fit to a file that can be later loaded into SNooPy (using something like s=load(filename)).

The fit is performed using the Lavenberg-Marquardt algorithm for minimizing χ2. Unless
you specify otherwise, all the fitting is done in flux units (SNooPy takes care of converting
magnitudes to fluxes, if needed, for both the observations and models). Note that because
the Lavenberg-Marquardt algorithm is an non-linear least-squares solving routine, it is not
guaranteed to find the global minimum χ2. It is your responsibility to inspect the fit to make
sure it got it right.

Now that you have seen the basic workings, we can now move on to the details of each
class so that you can build your own routines inside SNooPy, or write python scripts that
use these classes to fit light-curves.

7



3.7 Getting Help

Python has an internal help system which utilizes comments at the beginning of functions
and classes (so-called docstrings). Simply use the built-in help() function to get help on an
item. Here are some examples (output is not shown to save space):

In [1] help(sn)

In [2] help(sn.fit)

In [3] help(sn.plot)

In [4] help(lc)

Line 1 gets help about the entire sn class, which will list all the functions defined therein,
including internal ones that are not meant to be used by end users (but of course are available
to be hacked, but may lack good documentation). Lines 2 and 3 get more specific help on
individual member functions. Line 4 gets help on the lc (light-curve) class. You can ask for
help on any python object (including variables).

3.8 The Art of Interpolating

Sometimes, you may simply be interested in getting information about a light-curve inde-
pendent of model or light-curve template. SNooPy has several interpolation schemes built
in. Which ones depends on whether you have pymc installed (for the Gaussian Processes)
and how recent your numpy is (for the polynomials). Use the command ’list_types()’ to
list which are available to you. Here are brief explanations of how each scheme works. Unlike
the template fitting, interpolation is done filter-by-filter, and so the routines are accessed at
the light-curve instance level, instead of the supernova instance level.

3.8.1 Gaussian Processes

If you have installed the pymc package, it comes with an interpolating package that uses
Gaussian Processes (GP). GP’s are fantastic for interpolating when you may have missing
data (gaps). This is usually where other fitters like Dierckx splines and hypersplines (see
next sections) go awry. That’s not to say that GP somehow magically know what to do in
the absense of data, but they tend to not “go crazy” like splines and they properly compute
the uncertainty in the interpolator when there is missing data. In this way, GP’s are more
“honest”.

I’m not going to explain everything about GP’s, but suffice it to say that GP’s are
like “fuzzy functions”. They have a mean value (mean function) and a error (covariance
function). In SNooPy’s implementation, we employ the Matern covariance function, which
has 3 parameters: scale, amp (amplitude), and diff_degree (degree if differentiability).
These are conceptually very easy to understand: scale is the scale over which the function
typically varies (on the x-axis). Amplitude is the amount by which the function varies on
these scales. The degree of differentiability is the “smoothness” of the function. These are
the only 3 parameters you need to specify to the template() function to get a fit (or don’t
specify them at all and take the defaults, which are pretty good for light-curves). If the
function does not capture the full behaviour of the light-curve (too smooth), try decreasing
the scale and increase the amplitude. If it captures too much of the “noise”, increase the
scale, lower the amplitde and/or increase the diff degree.

Here is an example:

8



s.B.template(method=’gp’, scale=10, amp=s.B.mag.std(), diff_degree=3)

Here we choose the method (gp = Gaussian process), set the scale to 10 days, compute
the standard deviation of the B lightcurve and use that as the amplitude, and set the degree
of differentiability to 3. The downside to GP’s is that they are slower to solve than the other
interpolation methods. But I feel that the error estimates that come out (especially in the
regions with gaps) are much more robust.

3.8.2 Dierckx splines

Splines are a great way to represent data, but they have one very serious drawback: a variable
number of parameters. Not only do you have to specify the order of the spline (usually one
chooses k=3 for a cubic spline), you also have to choose how many knot points to use. Each
knot point has two parameters: its placement on the time axis and the coefficient of the spline
at that knot point. You can therefore have the number of knot points equal to the number
of data points (plus 2k end-point knots to properly define the spline on the boundaries) and
get a spline that’s guaranteed to pass through each and every point (an interpolating spline).
But real data has noise, so this isn’t what you want. At the other extreme, you could use
the bare minimum of 2k+2 knots which would give the smoothest spline, but then you lose
any interesting structure in the light-curve.

Luckily, scipy makes many of the algorithms from Paul Dierckx’s book “Curve and
Surface Fitting with Splines”(Dierckx, 1993) available. These algorithms deal with automatic
choice of the number and placement of the spline knots. They distill the problem down to
one parameter: the smoothing, s. The larger s, the smoother (fewer knots) the curve and
the smaller, the more the spline will approach an interpolating spline (s=0). If the weights
you provide the spline fitter are proper 1-sigma errors, then setting s to the number of data
points should result in a curve with reduced χ2

ν ' 1, which is what we really want. The first
time you fit the spline, set task=0 and the routine will choose an initial set of knot points.
If you wish to play around with the smoothing parameter, but keep the knots fixed, use
task=1; otherwise, new knots will be chosen each time.

It may be that the resulting spline doesn’t “look right”. Most likely, this is due to
badly estimated weights (variances). The solution is to vary s until you get something that
looks right, but of course, this is purely subjective. With proper 1-sigma errors, one can
legitimately play around with s in the range N −

√
2N < s < N +

√
2N until the spline

looks acceptable4.
Another way to spline is to impose what you think are sensible knots. In this case,

simply specify them as an array with the knots argument to the template() function and
set task=-1. In this case, the smoothing is ignored and you get the least-squares spline using
these knots. For example:

s.B.template(method=’spline’, task=0, s=len(s.B.mag))

s.B.template(method=’spline’, task=1, s=len(s.B.mag) - sqrt(2*len(s.B.mag)))

4I tend to shy away from this, preferring to remove the subjectivity. Rather, I would re-examine the
weights and decide whether they are correct. Playing around with s is effectively like globally increasing the
errors.

9



3.8.3 Hyperspline

The problem of choosing the correct value of s in the previous section can be removed by
using another set of spline routines developed by Thijsse et al. (1998). Rather than using χ2

as a statistic for determining the best-fit spline, they use a statistic call the Durbin-Watson
statistic. Without getting into the details, this statistic relies more on the auto-correlation
in the residuals, which to first order is insensitive to the individual errors of the points. In
essence, you’re using the pattern of the points to tell you what is noise and what is a true
trend.

This spline method, when it works, is the most automatic of the interpolation methods,
requiring no parameters (at least initially). Of course, the Achilles-heal of this method is the
presence of correlated errors among the data points. But this is likely also a problem with
Dierckx splines.

Another case where hyperspline has problems is when there are large gaps in the data.
Here, you might want to split up the problem in to two (or more) segments and work on
them individually. I hope to add this feature eventually. The parameter you’ll most likely
need to play with is lopt (set the initial number of knots). Set it higher if you find the spline
is too smooth.

3.8.4 Polynomials

If you have a sufficiently recent version of numpy, you’ll have access to several types of
polynomials: polynomial, chebyshev, laguerre, hermite, and hermiteE. Simply use any of
these as the method argument to template(). The polynomials have only one free parameter:
n, the order of the polynomial. For example to fit a Chebyshev polynomial:

s.B.template(method=’chebyshev’, n=5)

3.8.5 Interactive Fitting

A new feature is the ability to interactively fit the data using the matplotlib library. Simply
specify interactive=True when you call the template() member function. A window that
loos like figure XXX will pop up, showing you the light-curve, the current fit, and the residuals
from the fit. You will then have access to certain keystrokes depending on the fitting method.
In all cases, you can use the following keys:

• ’x’: The point closest to the mouse pointer will be masked (red X will cover it and it
won’t contribute to the fit). If you use ’x’ again near this point, you un-mask the data.

• ’r’: re-fit the plot (if necessary) and re-draw the plot.

• ’c’: (re)compute the light-curve parameters and plot them on the light-curve.

• ’q’: quit the interactive plotting and close the graph.

• ’?’: quick help on what keystrokes are available

When fitting Gaussian Processes, the following keys can be used:

• ’s’ and ’S’: decrease and increase the scale by 10%, respectively.

10



• ’a’ and ’A’: decrease and increase the amplitude by 10%, respectively.

• ’d’ and ’D’: decrease and increase the degree of differentiability by 1

When fitting with Dierckx splines, the following keys can be used:

• ’a’: Add a knot point at the cursor position. Note: this will change the task parameter
to -1.

• ’d’: Delete knot point closest to the cursor position. Note: this will change the task

parameter to -1.

• ’m’: Move the knot point closest to the cursor position to a new position (hit ’m’
again). Note: this will change the task parameter to -1.

When fitting with polynomials, the following keys can be used:

• ’n’ and ’N’: decrease and increase the order of the polynomial by 1

• ’m’: specify range over which to fit (press ’m’ at beginning and again at end). Pressing
’m’ twice in the same location will reset to default range.

4 SNooPy’s Internal Structure

The rest of this document involves the inner workings of SNooPy, more appropriate for those
who want to work with SNooPy programatically, or want to make their own models. Python
is object-oriented and SNooPy has been designed5 with this in mind. As such, the data
are organized into a hierarchical structure of objects. The base (or parent) object is the
supernova itself (the sn class). It contains scalar variables like coordinates, redshift, Milky-
Way reddening, etc. It has functions for plotting, fitting, and saving itself (see section 5). It
has variables that control the way the light-curves are fit.

The sn instance also contains references to a number of light-curves, one for each filter
(the lc class), which are stored in a python dictionary called data. The dictionary is indexed
by the observed filter name. These lc objects contain the data (time, magnitude, flux, errors,
etc), as well as functions for plotting, interpolation, and other useful tasks that apply to one
light-curve at a time. Each lc object also has a reference to a filter object that defines
the filter response, the zero-point, and lots of other goodies. There is also a shortcut for
accessing the lc instances: you can refer to them as member variables. So s.data[’B’] and
s.B are equivalent.

Lastly, the sn instance also has an object that defines the model that will be used to fit
the data. It holds the parameter values, errors, χ2, etc. It also does all the heavy lifting when
fitting the model to the data. Because the model is an abstract object, it can be replaced
with other model objects transparently (so long as the replacement model object conforms
to the structure expected by SNooPy; see section 8).

The outline of the major objects is show in figure 1. This is not exhaustive

5If you can call this cobbled-together-late-at-night-while-observing code a design.

11



Figure 1: Object structure in SNooPy.

5 Data Persistence

The current version of SNooPy gets and saves its data from three possible sources: a mySQL

database, a file that was created using the sn.save() function, or a flat text file of the proper
format. A single convenience function, get_sn() can be used to load a sn object from any
of these sources.

For large datasets, I highly recommend using the mySQL solution: it allows for data
persistence that is kept separate from one user/computer combination. The major downside
is you have to install mySQL (not too bad) and setup a schema which matches what SNooPy
expects (still not too bad) and possibly learning mySQL in the first place (well, you always
meant to learn it, didn’t you? This is your excuse). I’m not going to explain how to install
mySQL and setup a schema, that’s best left for the SQL documentation. The required
schema is detailed in Appendix A.

If you don’t want the bother of SQL, then you can load initial data from a flat ascii data
file (see section 6.2). When you’re done fitting and want to save the sn object, with all its
state variables, simply use the sn.save(’filename’) function to save the sn instance as a
python pickle file. You can later load it in using get_sn(’filename’).

WARNING: because the pickle file will contain the entire data structure of the SN object,
there is no guarantee that pickle files will be loadable by different versions of SNooPy. In fact,
I can pretty-much guarantee that major upgrades of SNooPy will result in non-compatibility
in pickled files.

6 The sn Object

6.1 Constructor and its options

Supernova objects are created using the sn constructor or using the get_sn() convenience
function:

12



s = sn(name, z=None, ra=None, dec=None)

s = get_sn(’my_favorite_SN.snpy’)

The optional arguments z, ra, and dec are used if the supernova does not exist in the
sql database. The redshift z is required to do the fitting (obviously) and ra, dec are needed
to compute the galactic extinction from the Schlegel maps.

6.2 Creating an object from a flat file

If you don’t have or want an SQL database, you can load in data from a flat file. To do this,
simply create a text-file with the following format:

{name} {z} {ra} {decl}

filter {filter1}

{Date1} {magnitude1} {error1}

{Date2} {magnitude2} {error2}

...

{DateN} {magnitudeN} {errorN}

filter {filter2}

...

The items in {}’s are to be filled in. The first line gives the name, redshift, and right-
ascension and declination in decimal degrees. Next, you specify the name of a filter, followed
by data points, one per line. Then you can input another filter and so on. The filter names
have to be recognized by SNooPy (use fset.list_filters() to list them). See section 10.3
for instructions on how to add custom filters. Once you’ve made this file, you simply use
get_sn() to make it into a sn object.

In[15]: SN = get_sn(’name_of_the_file.dat’)

\end{verbatime}

\subsection{Member variables}

The \texttt{sn} object has a number of member variables that do one

of three things: 1) contain data, 2) define a LC fit, or 3) modify

the instance’s behavior. Each of these is explained in the following

sections. A member variable is accessed as \texttt{instance.variable}.

For instance:

\begin{verbatim}

In[20]: SN = sn(’SN3241’)

<output supressed>

In[21]: Tmax = SN.Tmax

In[22]: first_B_epoch = SN.B.MJD[0] - Tmax

In[23]: Max_B_obs = max(SN.B.mag)

13



Variable type Description

z float Heliocentric redshift of the Supernova6

ra float Right Ascension in decimal degrees
decl float Declination in decimal degrees
data dictionary Holds the light-curve instances. E.g., s.data[’B’] is the B-band

LC data instance. See lc class below.
model model The model instance used to do the fitting (see section 8). This can

be changed either by hand or by using self.choose_model()

function (see section 6.3.5).
bands list A list of strings corresponding to the observed bands defined in

data.
filter lc The LC data instance for band filter. For example, s.B is the same

as s.data[’B’].
EBVgal float The Milky-way E (B − V ) from the Schlegel maps.

e_EBVgal float Error in EBVgal.
ks dictionary A dictionary of computed k-corrections. The index is the filter name,

the value is an array of k-corrections, one for each observed epoch.
parameter float Any of the parameters from the model. For example, s.dm15 is

equivalent to s.model.parameters[’dm15’]

e parameter float Error in any of the model parameters. For example, s.e Tmax is
equivalent to s.model.errors[’Tmax’]

Table 1: Data member variables

6.2.1 Data

A sn instance has a number of member variables that are not meant to be modified directly:
they hold data about the SN or the light-curve data. That doesn’t mean you can’t modify
it, but my philosophy has been to leave the observed data alone and build everything into
the model. The following table lists these variables and a short explanation:

Note that some of the member data are themselves instances of other classes, most notably
the lc (light-curve) class and model class, which are covered in sections 7 and 8, respectively.

6.2.2 Proxy Variables

A number of variables that belong to other classes/structures can be accessed directly from
the sn instance. For instance, you could refer to the B lc instance in two ways: s.B or
s.data[’B’]. You can also refer to the parameters Tmax of the current model in the following
three ways: s.Tmax or s.model.Tmax or s.model.parameters[’Tmax’]. The last cases are
the ’real’ locations; the others are simply re-directs that were added for convenience. The
re-directs are listed in table 1 in italics.

6.2.3 Behavior-Modifying Variables

The member variables that modify how the instance behaves are listed in table 2. They are
mostly to do with how the data are fit and plotted.

14



Name type Description

filter order list A list of strings corresponding to the order in which the filters
should be plotted. Also useful if you want to prevent data from
being plotted (simply omit the filter)

xrange,yrange list X and Y range to plot. Example: s.xrange = [-20,100]

Rv gal float Milky Way reddening law (default: 3.1)
fit mag boolean If true (1), fit in magnitude space, otherwise (0), fit in flux space.

Default: 0
restbands dictionary A dictionary-like object, indexed by observed band with value

corresponding rest-band. Used to specify which template is fit to
each observed filter. Example: s.restbands[’u’] = ’B’ means fit
observed band u with B-band template. If not explicitly set, it is
assumed that a restband with the same name as the observed band
is used.

replot boolean Replot the LC’s after fitting or change in parameter? Default: 1
quiet boolean Keep it quiet (non-verbose output)? Default: 1

k version string Which SED template to use: ’H3’ for Eric Hsiao’s latest, ’N’ for
Peter Nugent, ’91bg’ for Peter Nugent’s 91bg SED. Default: H3,
unless ∆m15 > 1.7, in which case ’91bg’ is used.

Table 2: Behavior modifying variables.

6.3 Member Functions

These are the functions that you will use to fit light-curves, get information about the fit, plot
the data, etc. Each function has explicit arguments (some mandatory, some optional). Also,
some of the member variables will alter how a function works (see section 6.2.3). The most
important functions are listed first, each with its own subsection, then a final section has the
less important, but useful functions. Some functions are not listed as they are internal to
the class. Read the code if you want details about any of the inner workings.

6.3.1 Plot

plot(xrange=None, yrange=None, title=None, single=0, dm=1, fsize=1.0, linewidth=3,

symbols=None, colors=None, relative=0, legend=1, mask=0, label_bad=1)

This function simply plots the data to the screen (or other PGPLOT device if requested).
All the arguments are optional and change the behavior of the plot. You can specify xrange

and yrange to modify the extent of the plot. You can output to postscript file by specifying
device= somefile.ps/CPS (see your local PGPLOT documentation for what devices are
available). You can give the plot a title by providing a string to that argument, change the
line width and default symbol size with linewidth and fsize, respectively.

If you specify single=1, then all the filters are plotted on the same graph, with a mag-
nitude offset of dm between them.

You can modify the colors and symbols used for each filter by passing a dictionary of
filter-value pairs. For example, colors={’B’:’blue’, ’R’:’red’, ’I’:’orange’} and
symbols={’B’:1, ’R’:2, ’I’:3}. See the matplotlib documentation for the number-
symbol combinations or matplotlib documentation for symbols and colors.

15



6.3.2 Fit

fit(bands=None, {parameter values}, kcorr=True, reset_kcorrs=True, mangle=True,

margs={}, **args)

This function is the heart of the software: fitting a light-curve to the data by minimizing
χ2. If you wish to restrict which filters are fit, specify bands, a list of filters to fit, other-
wise all filters are fit. So if, for example, you had data in B, V, r’ (Sloan r), Jc, and Yc,
you would specify [’B’,’V’,’r s’,’Jc’,’Yc’] as the first argument. This will simultaneously fit
the data in these filters to templates specified in the rest-bands member variable. So, if
restbands={’B’:’B’, ’V’:V’, ’r s’:’R’, ’Jc’:’I’, ’Yc’:’I’}, then the data in B would be fit with
a B template, V with a V template, r s with an R template, Jc with an I template and Yc
with an I template (not that you’d really want to do this).

The arguments {parameter values} are where you assign values to parameters of the
model in order to keep them fixed. If a parameter is not specified, it is free to vary. The
current values are always used as starting points. Consult the model documentation to find
out what parameters there are.

The remaining arguments are:

• kcorr: If true, compute k-corrections after an initial fit to find the time of maximum,
then fit again. If you want more control over how this is done, set kcorr=0, run
kcorr() manually, then re-fit again with kcorr=0.

• reset kcorrs: If true, zero-out any previously determined k-corrections before the fit-
ting starts. If you have computed your own k-corrections and applied them, use
reset_kcorrs=False and kcorr=False.

• mangle: If true, the current model of the photometry is used to construct colors as
a function of time. The SNIa SED is “mangled” to match these colors before the
k-corrections are computed.

• margs: Optionally, you can modify how the k-corrections are performed by passing
arguments as a dictionary. See section 6.3.4 for optional arguments.

• **args: Any optional arguments that the particular model accepts. For example, the
EBV_model accepts the calibration keyword argument..

6.3.3 Fit using MCMC

fitMCMC(bands=None, {parameter values}, kcorr=1, reset_kcorrs=True, mangle=True,

margs={}, Nwalkers=None, threads=1, Niter=500, burn=200, tracefile=None, plot_triangle=False,

**args)

This function is an alternate version of the more traditional fit() function. The ar-
guments are precisely the same as in the case of fit(), with the following additions and
modifications:

• Nwalkers: SNooPy uses emcee as the MCMC sampler, which spawns Nwalkers parallel
chains. These chains independently explore the shape of parameters space and more
are needed as the dimensionality increases. If None, the default is 10 times the number
of free parameters.

16



• threads: on multi-core systems, you can run the parallel chains using muiltiple threads.
Default is to use 1.

• burn: number of iterations to discard at the beginning of each chain, called burn-in
time. Default is 200.

• Niter: total number of iterations (including burn-in) to run. Default is 500.

• tracefile: if you want to keep the traces (for MC sampling later), specify a filename
here

• plot_triangle: if you have the triangle module, this will plot a nice graphical
representation of the PDF’s and covariances.

The other major difference (and reason for using MCMC in the first place) is that you can
specify priors for parameters instead of simply holding them constant. To do this, specify
the parameter as an argument to fitMCMC() and use the following strings to specify simple
priors:

• ’U,a,b’: A Uniform prior on the interval (a,b). Replace a and b with floats.

• ’G,m,s’: A Gaussian prior centered on m and with standard deviation s.

• ’E,t’: An exponential prior defined on (0,∞) with scale length t.

• Additionally, the model may have its own priors. For instance, the color model allows
you to specify special built-in priors using the rvprior keyword argument.

6.3.4 Making k-corrections by hand

kcorr(bands=None, mbands=None, mangle=1, interp=1, use_model=0, min_filter_sep=400,

**mopts))

This function allows the user to compute k-corrections that are decoupled from the fitting
procedure (you might want to do this to have more control over the k-corrections or to play
around with the arguments without re-fitting each time). At its simplest (mangle=0), simply
use the SNIa SEDs and filter functions to compute k-corrections. If mangle=1, then there
are more options.

The idea is that regardless of what has altered the shape of the supernova’s SED (ex-
tinction or intrinsic variation), the observed colors of the supernova give one a constraint on
the overall “tilt” of the spectrum. In the case of many bands, you can actually solve for a
higher-order fit (cubic spline, etc).

Simply call kcorr and supply it with a list of N filters, from which the N-1 colors will be
constructed. These colors, and the filter pass-bands, will be used to find a spline that, when
multiplied with the SED, produces the observed colors. By default, these N-1 colors are
constructed from bands, but if you want to use only a subset, then specify them in mbands.

To properly estimate the colors for any given day, one needs to have a model for the
light-curves. If you choose to use a template, then fit one beforehand. Otherwise, use the
fit spline() function to fit a spline (see section 7.2). If you do nothing, GLoEs will be used
to interpolate data. Probably not a good idea at high redshift, where S/N is low. In any
case, if you wish to use the real data for the colors where possible, then set interp=0.

17



When using mangle=1, if you have two filters which have very similar effective wave-
lengths, but different shapes (V and g, for instance), the splines can become very badly
behaved. If min filter sep is set, then any filter whose effective wavelength is closer than
min filter sep to another is removed automatically from the set of colors.

6.3.5 Other Useful functions

Here is a list and brief summary of other functions belonging to the sn class:

• choose_model(model): Choose which model to use. As of now, this is either“EBV_model”
or “max_model”.

• closest_band(wav, tempbands=[’B’, ’V’, ’R’, ’I’]): For each filter in the data,
find the closest rest-frame filter. Returns one of the strings listed in tempbands. These
strings must represent a valid filter found in the filters dictionary (see .

• compute_w(band1, band2, band3): Returns the reddening-free magnitude in the
sense that: w = band1 - R(band1,band2,band3)*(band2 - band3) for for instance
compute w(V,B,V) would give: w = V - Rv(B-V). This is still in development.

• getEBVgal(self): Gets the value of E(B-V) due to galactic extinction. The ra and
decl member variables must be set beforehand.

• get_color(band1, band2, nointerp=0): return the observed SN color of band1 -
band2. Returns a 4-tuple: (MJD, band1-band2, e band1-band2, flag). Flag is one of: 0
- both bands measured at given epoch; 1 - only one band measured, other interpolated;
2 - extrapolation (based on template) needed; 3 - data interpolated or extrapolated
beyond template’s definition, so not safe to use!

• get_mag_table(bands=None): This routine returns a table of the photometry, where
the data from different filters are grouped according to day of observation. When data
is missing, a value of 99.9 is inserted. Format of table is ”MJD mag1 emag1 mag2
emag2 ...

• get_max(bands, restframe=0, deredden=0): After a model or spline has been fit,
determine the maximum magnitude, error, and time of maximum for the light-curves
specified in bands. If rest frame=1, then remove the K-corrections, thereby convert-
ing to rest-frame filters. If deredden=1, then remove the galactic and host extinc-
tion. Otherwise, the maximum of the model array is used which, due to roundoff,
K-corrections, etc. may not be the true maximum. The function returns a 4-tuple:
(maxes, e_maxes, T_maxes, restband). maxes is an array of maxima, e_maxes an ar-
ray of their errors, T_maxes an array of time of maxima, and restband is a list of the
rest-bands used to fit each filter.

• get_rest_max(bands, deredden=0): Simply calls get_max() with restframe=1, for
backward-compatibility.

• get_restbands(): Automatically populates the rest-bands member data with filters
from the restbands member list, whichever effective wavelength is closest to the ob-
served bands. This is run automatically when the sn object is created.

18



• load(dictionary): Given a previously saved dictionary (as returned by save()), re-
load the parameters.

• lira(Bband, Vband, interpolate=0, tmin=30, tmax=90, plot=0): Use the Lira
law to estimate the extinction. The B-V color is constructed as a function of time
using filters Bband and Vband. The color excess is then estimated to be the median
offset between (B-V) and the Lira Law in the time window tmin < t < tmax. If
interpolate=1, then missing data is interpolated. Use tmin and tmax to restrict
which data are used. Use plot=1 to get a graph. The function returns a 3-tuple:
E(B-V), the error and the fitted slope, which can be used as a diagnostic.

• mask_data(): Interactively mask out bad data and unmask the data as well. The
only two bindings are ”A” (click): mask the data and ”u” to unmask the data.

• save(): This will return the parameters dictionary, which can be used to save the
state of the fit. Use load() to re-load the parameters.

• summary(): Get a quick summary of the data for this SN, along with fitted parameters
(if such exist).

• update_sql(attributes=None, dokcorr=1): Updates the current information in the
SQL database, creating a new SN if needed. If attributes are specified (as a list of
strings), then only these attributes are updated.

7 Light-curve class

The light-curve class, lc, is a simpler class than sn (for now). It is available for scripting by
importing the lc module. It basically contains the data of a single filter and a few functions
to work with the data. Of particular interest might be the light-curve fitting functions,
which allow one to make templates from well-sampled and high S/N data. Depending on
the version of numpy and if you have pymc installed, you can fit light-curves with splines,
polynomials, and Gaussian Processes (if you have pymc installed).

7.1 Member data

Table 3 lists the member variables of the lc class.

7.2 Member Functions

The most useful member functions are given below:

• eval(self, times, recompute=0, t_tol=0.1, **args): Interpolate (if required)
the data to time ’times’. If recompute=1, force a re-computation of the spline co-
efficients (you can also use any of the arguments for mkspline() here). If there is a
data point closer than t tol away from a requested time, that value is used without
interpolation.

• mask_emag(self, max): Update the lc’s mask to only include data with e mag <
max.

19



name type description

band string name of the filter that this instance represents
parent sn inst. A pointer to the sn instance that contains this lc

instance.
filter filter inst. Instance of the filter object that corresponds to

self.band
MJD float array Array of observations dates, usually in Modified Julian

Day
t float array If Tmax has been solved, then this is an array of epochs

magnitude float array Array of observed magnitudes.
e mag float array Array of uncertainties in the magnitudes.

K float array Array of k-corrections.
mag float array Like magnitude, but if K are defined, then this returns

the k-corrected magnitudes (self.magnitude - self.K).
Otherwise, it is equivalent to self.magnitude.

flux float array Automatically generated array of fluxed, based on the
magnitudes and zero point defined by band.

e flux float array Array of uncertainties in the flux.
tck list 3-element list defining a spline: array of knot points,

array of spline coefficients, and the order of the spline.
This can be used with scipy.integrate.splev() to evaluate

the spline at any point (see help page for splev).
model float array A model of the light-curve based on a template fit

(generated automatically by template()).
model t float array The times for the model.

model sigmas float array Errors in the model. Generated if do sigma=1 in the
call to template()

dm15, e dm15 floats The computed value of dm15 and its error (if
do sigma=1) from the spline. Generated by template()

Tmax,e Tmax floats The computed value of Tmax and its error (if
do sigma=1) from the spline. Generated by template()

Mmax, e Mmax floats The computed value of the maximum magnitude and its
error (if do sigma=1) from the spline. Generated by

template()
mask int array The mask defines which data are good. If mask[i] = 1,

then the data at element i is considered good (and will
be used in a fit), otherwise, if it is 0, the data is bad

and ignored by fits.

Table 3: Member variables of the lc class

20



• mask_epoch(self, tmin, tmax): Update the lc’s mask to only include data between
tmin and tmax.

• template(self, fitflux=False, do_sigma=True, Nboot=50, method=default_method,

compute_params=True, interactive=False, **args): Generate a smooth interpo-
lation template of the data. You can choose which method to use by specifying method.
To get a list of methods available for your setup, use the list_types() function. If you
wish to fit the flux domain, specify fitflux=True. If you set compute_params=True, the
interpolator will attempt to measure the following light-curve characteristics and save
them as member variables. In order to compute errors in these values, the algorithm
may need to do bootstrap errors, in which case, Nboot is the number of iterations to
use. The computed variables are:

– self.Tmax and self.e_Tmax: The time of earliest maximum for the light-curve,
with error.

– self.Mmax and self.e_Mmax: The magnitude at self.Tmax, with error

– self.dm15 and self.e_dm15: The Phillips parameter (change in magnitude be-
tween Tmax and day 15 in the rest frame of the SN), with error.

In the following section, I describe the different interpolation methods and their pa-
rameters, which you can specify in the call to template(). There is a new argument:
interactive. If true, a plot of the light-curve will open and you will be able to
interactively fit the data. See section for more details.

• plot(self, flux=0): Plot the light-curve and possibly the fitting spline. If an inter-
polatiing template has been fit, a second panel will show the residuals.

Note: If you fit a template and then use the parent sn instance’s plot() function, the spline
will be plotted on top of the data (unless there is already a model defined from a fit(), which
takes precedence).

8 Model class

This class is designed to do all the work of fitting a model to data. It uses the Levenberg-
Marquardt least-squares algorithm for find the minimum χ2. It is designed to be sub-classed
in order to create specific models. These sub-classes will inherit the basic fitting code and so
you can concentrate on setting up the model. In this section, I outline the basic structure of
the class, so that you can access the underlying machinery to do your own coding (or design
your own model). The casual user need not worry about any of this. SNooPy comes with
two models: EBV_model and max_model.

If you want to create your own model, your best bet is to simply modify the existing
model.py module and add your own. Simply create a subclass based on the model class.
You then override self.parameters, self.__init__(), self.guess(), self.setup(),
self.__call__(), and self.get_max(). Each is described in a separate section below.

21



Variable Description

Tmax Time of B maximum (days).
dm15 The decline rate parameter, ∆m15 (mag.)

EBVhost Host E (B − V ) reddening (mag.)
DM Distance modulus (mag.)

Table 4: Fit parameters of the EBVmodel instance.

8.1 self.parameters

The first thing to define in the model class is the self.parameters member variable. This
is a dictionary that contains parameter:value pairs. The model will use these parameters
to build the numerical model, which is sent to scipy’s leastsq routine. Another member
variable that has the same keys is self.errors. This dictionary will have the final errors of
the fit stored in it. As an example, here are the parameters used by the EBV_model class:

The model can also have a variable number of parameters, as is the case in max_model.
In this case, you can dynamically set up self.parameters in the self.setup() function
(see below).

8.2 self. init (self, parent)

Next, you will override the self.__init() function. The only two arguments are self

and parent. self.__init__ must also call the model.__init__() function as part of the
initialization. Other than that, you are free to setup whatever member variables you want.
self.__init__() is called when the model instance is created, that is, when the sn object
is created or when sn.choose_model() is called.

8.3 self.setup(self)

There are cases when you need to do some setting up after the user has called sn.fit(),
but before the actual fitting occurs. For example, in the case of max_model, the number of
parameters depends on how many filters the user fits (each filter has its own maximum). So
in self.setup(), self.parameters is updated. This is not needed in EBV_model, because
it has a fixed set of parameters regardless of how many filters are fit. However, it does do
some initial checking to make sure that if EBVhost is a free parameter, the user has asked
to fit at least two filters.

8.4 self.guess(self, param)

Before the fitting starts, any un-initialized variables (those whose value are None) need to be
set to valid values, presumably close to the actual solution. You must override self.guess()
to do this. For any parameter param, return an initial guess for this parameter. The
self.guess() function is called after self.setup(), but just before the fitting starts.

8.5 self. call (self, band, t, **args)

This is the meat of the model. Given a filter band and time t (which is an array of times),
return the model for the light-curve as an array of floats. Now, the question comes up: should

22



the model return magnitudes or fluxes? The answer is: either. You can choose to return a
model in magnitudes or fluxes, but you need to set the member variable self.model_in_mags
to true if your model returns magnitudes, or false if it returns fluxes. SNooPy always does
the actual least-squares fitting in fluxes.

You can define any number of optional arguments after t (replace **args with your
arguments). You can then specify these optional arguments in the sn.fit() call and
they will propagate through to the __call__(). For example, EBV_model has the optional
calibration parameter.

8.6 self.get max(self, bands, restframe=0, deredden=0)

The last member function to override is get max(). Given a set of filters (bands), return
the model’s value at maximum light. If the optional argument restframe=1, then apply a
k-correction to the value. If deredden=1, remove any reddening (galactic and host, if it is
defined).

9 Template class

9.1 dm15temp.py

This class is basically a wrapper to Prieto’s template generator and is used to generate
templates for the sn class. It is available to scripts by importing the dm15temp module. The
constructor doesn’t need any arguments, so you simply make an instance as follows:

t = template()

The instance then has member variables for each filter defining a template: t.B, t.V,

t.R, and t.I. There are also errors in these quantities: t.eB, t.eV, t.eR, and t.eI. The
epoch is contained a variable t.t Each of these variables is a python array. Immediately
after creating the instance, there will be no template defined. One has to make it with a
specific value of ∆m15:

t.mktemplate(1.1)

This will run Prieto’s code and insert the proper values into the member variables. This
is all done in C, so is quite fast. The only other member function is t.eval(band, times,

z=0). This function is used to evaluate the template at specific times (useful for doing least-
squares fitting to data). Simply specify which filter as a string (band) and an array of epochs
to evaluate (times). The function returns two values: an array of interpolated values of the
template and a mask array. This mask will be 1 for interpolation and 0 for extrapolation
(where you should not use the data). You can also specify a redshift z so that the times are
interpreted as observed epochs and will be converted to rest-frame epochs before evaluating.

9.2 CSPtemp.py

This is new module and constitutes a new method very similar to Prieto’s technique. The
idea is that one has a set of N well-sampled light-curves with pre-maximum data, so that
∆m15, Tmax, and mmax are all well determined. One then has a set of data points that define

23



a surface in the 3D parameter space: (t− Tmax,∆m15,m−mmax). The problem is that this
surface is sparsely and heterogeneously sampled. Prieto’s method solves this in two steps:
1) construct spline representations of the N light-curves in the t−direction, then interpolate
in the ∆m15-direction by way of averaging the splines with an adaptive weight function.

This new generator uses an algorithm developed by Barry Madore called GLoEs (Gaus-
sian Local Estimation). In 1-D, one simply interpolates by way of a quadratic (or higher-order
polynomial) through all the available data points. However, the weights of the points are
determined using a Gaussian centered at the desired interpolation point and with a width
sufficient to include the minimum number of points required for the polynomial. In 2D, one
uses an elliptical Gaussian in the same way and fits a 2D polynomial to the data points. The
advantage is that this is done in one step and data can be added without the need to re-train
the fitter. The disadvantages are: 1) it’s a slower process and 2) the resulting templates
have more freedom to deviate from the idealized behaviour. For instance, if one asked for a
template with ∆m15 = 1.15, and actually measured ∆m15 directly, you would get a slightly
different answer. As such, ∆m15 becomes a parameter, rather than a direct measurable.

Despite these very different approaches, the CSPtemp.py module behaves exactly the
same as the older dm15temp.py module as far as the user is concerned. They can be used
interchangeably. However, CSPtemp.py uses the CSP dataset, so offers a different set of
filters.

9.3 ubertemp.py

In order to facilitate mixing-and-matching of different filters, a module had to be created
that would allow the user to pick either the CSP or Prieto filters. This is ubertemp. The way
you choose which filters to use is by name. Asking for a filter in the set u,B,V,g,r,i,Y,J,H
will generate CSP templates. Asking for a filter in the set Bs,Vs,Rs,Is will generate Prieto
templates (think of the ’s’ as ’standard’ system, as opposed to the CSP templates which are
in the CSP natural system). So, for example, you could compute a poor-man’s S-correction
between the CSP natural B-band and the standard B-band:

In[1]: t = ubertemp.template()

In[2]: t.mktemplate(1.4)

In[3]: B_CSP = t.eval(’B’, arange(-10,60,1.0))

In[4]: B_std = t.eval(’Bs’, arange(-10,60,1.0))

In[5]: Scorr = B_CSP - B_std

As far as fitting goes, simply use the restbands member variable to choose which filter
you wish to fit with. The model will then take care of generating the appropriate template
and fit it to your observations.

10 Filters and Spectra

Two other useful classes are filter and spectrum. They are available for scripting by
importing the filters module. The filter class inherits from the spectrum class, which is
the more general object (a filter can be considered a spectrum of sorts).

24



name type description

name string Descriptive name for the spectrum
file string Filename of the spectral data
wave float array Array of wavelengths
resp float array Array of fluxes or responses (for filters)
flux float array Alias for ’resp’

comment string Any useful comments you want to ad
wavemax,wavemin float The minimum and maximum wavelengths defined by

this spectrum
avewave float The average wavelength (useful for filters)

Table 5: Member variables of the spectrum class.

10.1 spectrum object

You create a spectrum instance with two optional arguments:

spec = spectrum(name, file)

The name is just an identifying string. The file contains the spectrum as (lambda, flux)
pairs, one per line. The member variables are given in the following table.

10.2 Filter object

The filter object inherits from the spectrum object, so it has all its member variables. The
filter is created in the same way the spectrum is, except it has one additional optional
argument:

f = filter(name, file, zp)

The argument zp is the zeropoint of this filter. If you know it beforehand, specify it
here. Otherwise, you can use the compute zpt() member function described below. The
zero-point is stored as the member variable f.zp. The filter class also adds a few extra
member functions, which are described below:

• compute_zpt(spectra, mag, zeropad=0): Given a single spectrum or list of spec-
trum instances (spectra) and a list of associated magnitudes (mag), compute the
zero-points of this filter for these spectra, which are returned as an array. You could
average the output to get a good handle on the actual zero-point. If the wavelength
range of the filter is not completely inside the wavelength range of the spectrum, an
exception is raised, unless zeropad=1, in which case the spectrum is assumed to be 0
outside the filter range.

• response(wavespec, flux=None, z=0, zeropad=0, photons=1): Given an array
of spectra, compute the response of the filter across the spectra:

∫
F (λ)S(λ)λ/chdλ (if

photons=1), or
∫
F (λ)S(λ) dλ if photons=0. You can either specify the spectra as ar-

rays of spectrum instances and leave flux=None, or else specify an array of wavelength
arrays and flux arrays. If the optional redshift, z, is given, the spectrum is red-shifted
before the integration is done (actually, the filter is blue-shifted). zeropad has the same
meaning as in compute zpt().

25



• synth_mag(wavespec, flux=None, z=0, zeropad=0, photons=1): Given an array
of spectra, compute the synthetic magnitude through this filter. The zero-point must
be defined in the instance (use compute_zpt() if needed). If a redshift is specified, the
filter is blue-shifted by 1/(1 + z) before computing the response (as in response()).
Arguments are the same as response().

10.3 Default spectra and filters

The filters module has two variables: fset and spectra. fset (filter set) is a dictionary-
like object of pre-defined filters for your use. The filters have pre-defined zero-points, so can
be used to compute synthetic magnitudes “out of the box” (see the accompanying document
zeropoints.pdf for a discussion on how there are determined). The filters are organized
by observatory/telescope/filter. You can list the observatories using fset.list observatories().
You then use the observatory name as a member variable to get the observatory. Each
observatory has a function list telescopes(). The telescope name is used as a member variable
to get the telescope, which has a list filters() function. Each filter can also have a unique
string ID that can be used directly. Here are some examples to give you an idea how it
works.

print fset.list_observatories

print fset[’B’]

print fset.LCO.Swope.B

print fset.B

print fset.LCO.list_telescopes()

print fset.LCO.Swope.list_filters()

These filters are loaded at runtime and come from data files distributed with SNooPy.
The are located in the source distribution in the folder SNooPy/filters/filters. In that
folder are folders for each observatory. In each observatory foder, there are folders for each
telescope/instrument, and in each telescope/instrument folder, there are files that contain
the filter bandpasses and a file named filters.dat. Here is a portion of the folder structure:

|-- filters

| |-- APO

| | -- SDSS

| | |-- filters.dat

| | |-- sdss_g.dat

| | |-- sdss_i.dat

| | |-- sdss_r.dat

| | |-- sdss_u.dat

| | |-- sdss_z.dat

| |-- CFHT

| | -- Megacam

| | |-- filters.dat

| | |-- g_snls.dat

| | |-- i_snls.dat

| | |-- r_snls.dat

| | |-- z_snls.dat

26



The filters.dat file has a table of the filters, their names, and zero-points. Here is a sample
of the SDSS filters.dat file:

u_s sdss_u.dat 12.4757864 sloan u at APO

g_s sdss_g.dat 14.2013159905 sloan g at APO

r_s sdss_r.dat 14.2156544329 sloan r at APO

i_s sdss_i.dat 13.7775438954 sloan i at APO

z_s sdss_z.dat 11.8525822106 sloan z at APO

Columns are separated by white space. The first column is a unique ID (SNooPy will
complain if you use an ID that was previously used). The next column indicates the data
file that defines the filter. The third column is the filter zero-point (zp), in the sense that

m = −2.5 log10

(
1

ch

∫
F (λ)S (λ)λdλ

)
+ zp

Another option for the zero-point column is to specify the magnitude of a standard spectrum.
For instance, you could use the string“VegaB=0.0”. In this case, the zero-point is determined
by setting the synthetic magnitude of the spectrum VegaB (Bohlin & Gilliland, 2004) to zero.

The format of the filter response files is simply two columns: wavelength (in angstroms)
and flux.

You can add your own filters by making the appropriate folders. You can either add
filters to an existing observatory/instrument folder or make one of your own. However, you
must do this in the source folder (not the install folder in site-packages). After you have
added your filters, run the update-snpy script.

The filters module also comes with some spectra in a dictionary called, standards that be-
haves much like fset. The spectra are organized by spectra.system.spectrum. Currently,
we have 3 systems: Vega, Smith, and Landolt. Vega has several SEDs from CALSPEC.
Smith has the standards from Fukugita et al. (1996). Landolt has the spectrophotomet-
ric standards from Stritzinger et al. (2005) Each of these refers to another dictionary of
standards. Here’s now to get their names:

In[1]: standards.list_systems()

In[2]: standards.list_SEDs()

In[3]: standards.Landolt.list_SEDs()

Just like fset, you can refer to an SED by a short-name:

In[1]: print spectra[’VegaB’]

VegaB: Vega spectrum from Calspec, version 5 (Bohlin & Gilliand (2004) AJ 127 3508)

Because these are spectum objects, you can do things like compute synthetic magnitudes
from any of the filters in SNooPy. For example:

In[1]: Bvega = fset[’B’].synth_mag(spectra[’VebaB’])

In[2]: Bvega = fset[’V’].synth_mag(spectra[’VebaB’])

In[3]: print Bvega, Vvega, Bvega-Vvega

0.0418920257375 0.0160448066956 0.0258472190419

27



11 Coming Soon(ish)

Here is just a list of things which I have planned for the future, but have not yet implemented.

1. Incorporate the SCP B-band template in order to compute their stretch values.

2. Use other fitting functions besides B-splines to generate templates (polynomials, cus-
tom parametric functions, etc).

3. Ability to plot the confidence intervals on the fitted parameters in different cuts of
parameter space.

4. Ability to impose priors on the parameters. Right now, there is only a fixed prior on
∆m15 that can be turned on and off. I’d like to implement arbitrary priors from the
user.

5. Automatically do a grid-search for the minimum χ2 and plot confidence intervals.

6. Make a GUI (in the far far distant future and only if someone buys me a really good
bottle of Scotch).

References

Bohlin, R. C., & Gilliland, R. L. 2004, AJ, 127, 3508

Burns, C. R., Stritzinger, M., Phillips, M. M., Hsiao, E. Y., Contreras, C., Persson, S. E.,
Folatelli, G., Boldt, L., Campillay, A., Castellon, S., Freedman, W. L., Madore, B. F.,
Freedman, W. L., Morrell, S. N., Salgado, F., & Suntzeff, N. B. 2014, ApJ, 789, 32

Burns, C. R., Stritzinger, M., Phillips, M. M., Kattner, S., Persson, S. E., Madore, B. F.,
Freedman, W. L., Boldt, L., Campillay, A., Contreras, C., Folatelli, G., Gonzalez, S.,
Krzeminski, W., Morrell, N., Salgado, F., & Suntzeff, N. B. 2011, AJ, 141, 19

Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245

Dierckx, P. 1993, Curve and surface fitting with splines (New York, NY, USA: Oxford Uni-
versity Press, Inc.)

Folatelli, G., e. a. 2009, AJ, In Press

Folatelli, G., Phillips, M. M., Burns, C. R., Contreras, C., Hamuy, M., Freedman, W. L.,
Persson, S. E., Stritzinger, M., Suntzeff, N. B., Krisciunas, K., Boldt, L., González, S.,
Krzeminski, W., Morrell, N., Roth, M., Salgado, F., Madore, B. F., Murphy, D., Wyatt,
P., Li, W., Filippenko, A. V., & Miller, N. 2010, AJ, 139, 120

Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996,
AJ, 111, 1748

Hsiao, E. Y., Conley, A., Howell, D. A., Sullivan, M., Pritchet, C. J., Carlberg, R. G.,
Nugent, P. E., & Phillips, M. M. 2007, ApJ, 663, 1187

Nugent, P., Kim, A., & Perlmutter, S. 2002, PASP, 114, 803

28



O’Donnell, J. E. 1994, ApJ, 422, 158

Phillips, M. M. 1993, ApJ, 413, L105

Prieto, J. L., Rest, A., & Suntzeff, N. B. 2006, ApJ, 647, 501

Stritzinger, M., Suntzeff, N. B., Hamuy, M., Challis, P., Demarco, R., Germany, L., &
Soderberg, A. M. 2005, PASP, 117, 810

Thijsse, B. J., Hollanders, M. A., & Hendrikse, J. 1998, Comput. Phys., 12, 393

A mySQL Schema

The required mySQL schema consists of a single database called SN that contains two tables.
One is named SNe and the other is Photo. SNe holds the global information about each
supernova (redshift, ra, dec, etc). The Photo table holds the individual points on the light-
curve. You an add extra columns to the tables and other tables to your database, these are
just the minimum required.

A.1 SNe Table

Here is the schema for the SNe table.
Field Type Null Key Default Comment

SNId int(11) NO PRI NULL The unique identifier for each SN
name varchar(20) NO None A string identification (use this to retrieve)

z float YES NULL redshift
ra float YES NULL Right-ascension in decimal degrees

decl float YES NULL Declination in decimal degrees
obs1 int(11) YES NULL Epoch of first observation

Tmax double YES NULL Time of B-maximum
e Tmax double YES NULL error in Tmax
dm15 double YES NULL decline-rate parameter

e dm15 double YES NULL error in dm15
s double YES NULL stretch

e s double YES NULL error in s
EBVhost double YES NULL Host extinction

e EBVhost double YES NULL error in EBVhost
DM double YES NULL Distance modulus

e DM double YES NULL error in DM
rchisq double YES NULL reduced chi-squared
object blob YES NULL storage for sn object

A.2 Photo Table

Here is the schema for the only other table needed by SNooPy.

29



Field Type Null Key Default Comment

PhotoID int(11) NO PRI NULL unique running ID number
SNId int(11) YES NULL cross-identification to the SN
name varchar(20) NO NULL string identification
JD double YES NULL Julian Day of the observation

filter varchar(3) YES NULL filter identifier
m double YES NULL magnitude

e m double YES NULL error in m
K double YES NULL K-correction

e K double YES NULL error in K

30


